

Ricardo Augusto Rodrigues Gralhoz

LawML: Uma Linguagem para a Modelagem de Leis de Interação em Sistemas Multi-Agentes Abertos

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Informática da PUC-Rio.

Orientador: Carlos José Pereira de Lucena Co-orientador: Ivan Mathias Filho

> Rio de Janeiro Julho de 2007

Ricardo Augusto Rodrigues Gralhoz

LawML: Uma Linguagem para a Modelagem de Leis de Interação em Sistemas Multi-Agentes Abertos

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Informática da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Carlos José Pereira de Lucena

Orientador

Departamento de Informática – PUC-Rio

Prof. Ivan Mathias Filho

Co-orientador

Departamento de Informática - PUC-Rio

Prof. Firmo Freire

Departamento de Informática - PUC-Rio

Prof. Ricardo Choren Nova

Depto. de Engenharia de Computação - IME

Prof. José Eugenio Leal

Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 31 de Julho de 2007.

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Ricardo Augusto Rodrigues Gralhoz

Graduou-se no Curso de Bacharelado em Informática e Tecnologia da Informação da Universidade do Estado do Rio de Janeiro (UERJ) em 2005. Seu estudo e pesquisa, como bolsista da CAPES, foram realizados na área de Engenharia de Software de Sistemas Multi-Agentes e Governança em Sistemas Multi-Agentes Abertos no Laboratório de Engenharia de Software (LES) da PUC-Rio.

Ficha Catalográfica

Gralhoz, Ricardo Augusto Rodrigues

LawML: uma linguagem para modelagem de leis de interação em sistemas multi-agentes abertos / Ricardo Augusto Rodrigues Gralhoz ; orientador: Carlos José Pereira de Lucena ; co-orientador: Ivan Mathias Filho. – 2007.

200 f.: il.(col.); 30 cm

Dissertação (Mestrado em Informática)--Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2007.

Inclui bibliografia

1. Informática – Teses. 2. Engenharia de software. 3. Sistemas multi-agentes. 4. Sistemas abertos. 5. Mecanismos de governança. 6. Governança baseada em leis. 7. Leis de interação. 8. UML. 9. Linguagem de modelagem. I. Lucena, Carlos José Pereira de. II. Mathias Filho, Ivan. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Informática. IV. Título.

CDD: 004

Ao querido Pai do céu, pela beleza da criação, pela justiça das leis, pela infinita misericórdia, pelas grandes oportunidades e pela presença constante aqui, bem perto. Este trabalho é uma pequena realização no sonho de construir um mundo melhor, mais justo, mais humano.

Apesar de não termos uma visão imediata e direta, como deve ter um bom médico ou um bom político, nosso trabalho contribui para a transformação deste mundo em um mundo melhor.

Com nossos estudos, projetos e produtos, nós permitimos que a Informática se atualize e abra portas para empresas, organizações e pessoas. Abrimos caminhos para que pessoas possam vender e comprar seus serviços e produtos com maior facilidade e segurança. Facilitamos o dia-a-dia, ao fazer as tarefas se tornarem fáceis, rápidas, seguras e agradáveis. Permitimos que projetos não fracassem, que idéias se realizem e que sonhos se tornem realidade.

Agradecimentos

A Deus, pela maior orientação e governança da vida. À minha família querida (daqui e de longe), pelo apoio, por toda compreensão, amor, amizade, carinho e pensamento positivo e à minha namorada Katie, por tudo isso, pela ajuda no inglês, por ser linda e pelos inesquecíveis momentos de "love".

Ao professor Lucena pelo exemplo de dedicação e devotação à Ciência, pela confiança, pelo apoio, pela orientação e pelos incentivos. Ao professor Ivan, pelo grande caráter, pela grandiosa co-orientação, dedicação e contribuição. Aos professores Firmo e Choren, pela serenidade, pelas dicas e pelo trabalho de Comissão examinadora.

À CAPES e à PUC-Rio, pelos auxílios concedidos, sem os quais este trabalho não poderia ter sido realizado, e pelo conceito máximo da pós-graduação. É o Brasil alcançando a qualidade científica internacional!

Aos meus amigos do LES e da turma de PAA, agentes de amizade, alegria, descontração, apoio, pela saudável troca de experiência, por todas as dicas, idéias, projetos e estudos realizados em conjunto. Aos meus outros amigos, da família, da UERJ, do CEFET, do CEACE, do SESFA, do surfe, da vizinhança, e a todos outros, por todo o incentivo e compreensão, e por participarem da minha história de vida. Às crianças do meu coração pelo amor, pelo exemplo de pureza e de compreensão.

Aos profissionais Vera, Manu, Prof. Casanova, Prof^a. Clarisse, Prof. Rui, Prof. Herman, Prof. Arndt, dona Jo, tia Ana, Dr. Ricardo, Dr. Clóvis, Dr. Avelino e tantos outros, pelo exemplo de amor ativo à profissão e pelo trabalho feito.

Ao Kardec, à Joanna de Angelis, ao Joseph O' Connor, e a todos os outros autores que contribuíram pela minha formação.

Resumo

Gralhoz, Ricardo Augusto Rodrigues; Lucena, Carlos José Pereira de; Mathias Filho, Ivan. LawML: Uma Linguagem para a Modelagem de Leis de Interação em Sistemas Multi-Agentes Abertos. Rio de Janeiro, 2007. 200p. Dissertação de Mestrado - Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro.

O paradigma de agentes surgiu visando atender à necessidade de novas abstrações para o desenvolvimento de sistemas complexos e distribuídos. Para lidar com a imprevisibilidade do comportamento dos sistemas multi-agentes abertos, que são sistemas concorrentes e assíncronos formados por diversos agentes que agem com certo grau de autonomia e que podem interagir entre si para alcançar objetivos individuais, são usados mecanismos de governança na regulação das interações. Na maioria das abordagens existentes, a especificação das regras de governança é feita com o uso de linguagens declarativas ou de novas representações gráficas, o que pode tornar custosa essa tarefa e dificultar o uso desses mecanismos de governança. Esta dissertação apresenta a LawML, uma linguagem de modelagem baseada em UML para a especificação das regras de interação entre os agentes, com o objetivo de facilitar a tarefa de modelagem e, portanto, facilitar o uso de um mecanismo específico de governança baseado em leis de interação. Um conjunto de regras de transformação é apresentado junto com a linguagem, para permitir que os modelos gráficos de lei de interação sejam transformados em código no formato XMLaw - a linguagem declarativa do mecanismo de governança. Baseada nessas regras de transformação, é apresentada a ferramenta LawGenerator de transformação automática dos modelos de lei, para permitir o desenvolvimento das leis de interação com o foco nos modelos. E, por fim, esta abordagem é aplicada em um estudo baseado em um caso real de sistema distribuído com as características de um sistema multi-agente aberto – o SELIC, do Banco Central do Brasil.

Palavras-chave

Informática - Teses; Engenharia de Software; Sistemas Multi-Agentes; Sistemas Abertos; Mecanismos de Governança; Governança baseada em Leis; Leis de Interação; UML; Linguagem de Modelagem.

Abstract

Gralhoz, Ricardo Augusto Rodrigues; Lucena, Carlos José Pereira de; Mathias Filho, Ivan. LawML: A Language for Modeling Interaction Laws in Open Multi-Agent Systems. Rio de Janeiro, 2007. 200p. Master Science Thesis - Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro.

The paradigm of agents appeared while aiming to satisfy the need for new abstractions for the development of complex and distributed systems. To manage with the unpredictable behavior of open multi-agent systems, governance mechanisms are used in the regulation of interactions between agents. This is due to the concurrent and asynchronous characteristics of these systems, which are formed by several agents who can act autonomically and can interact with each other to reach individual goals. In the majority of approaches, the governance rules are specified with declarative languages or new graphical representations, which can make this task costly and can make the use of these governance mechanisms difficult. This essay presents the LawML, a modeling language based on UML for the specification of rules for interactions between agents, which is aimed to facilitate the modeling task and, therefore, to facilitate the use of a specific governance mechanism based on interaction laws. A set of transformation rules is presented in addition to the language to allow the graphical interaction law models to be transformed into the declarative language of the governance mechanism, the XMLaw format code. To allow the model-driven development of interaction laws, it is presented the LawGenerator, a tool for the automatic transformation of the law model, based on these transformation rules. Finally, this approach is applied to a case study based on a real distributed system, the Brazilian Central Bank SELIC system, with the characteristics of an open multi-agent system.

Keywords

Computer Science - Thesis; Software Engineering; Multi-Agent Systems; Open Systems; Governance Mechanisms; Law-Governed Approach; Interaction Laws; UML; Modeling Language.

Sumário

1 Introdução	18
1.1. Motivação	19
1.2. Solução Proposta	21
1.3. Contribuições	22
1.4. Organização da Dissertação	24
2 Conceitos Básicos	25
2.1. Governança de SMA	25
2.2. Abordagem de Leis XMLaw	27
2.2.1. Modelo Conceitual da Abordagem de Leis XMLaw	28
3 Trabalhos Relacionados	38
3.1. ISLANDER: um Editor de Instituições Eletrônicas	38
3.2. LGI: Interação Governada por Lei	42
3.3. Modelagem de Organizações Eletrônicas	46
3.4. Um Modelo de Quase Tudo: Estrutura de Normas e Ontologias	
em Organizações de Agentes	48
3.5. Agentes Governados por Normas em seu Julgamento	51
3.6. Normas Abstratas e Instituições Eletrônicas	53
3.7. Agentes Deliberativos Normativos: Princípios e Arquitetura	55
3.8. Outros Trabalhos	57
3.9. Crítica aos Trabalhos	61
4 A Linguagem de Modelagem LawML	62
4.1. O Formalismo da Linguagem	62
4.2. A Estrutura do Meta-modelo de LawML	64
4.3. O Problema Exemplo	65
4.4. Diagramas	67
4.4.1. Diagrama de Instâncias de Elementos de Lei	67
4.4.1.1. Sintaxe	70

4.4.1.2. Regras de Transformação	13
4.4.1.3. Considerações	79
4.4.1.4. Problema do Aeroporto: Estrutura da Lei	80
4.4.2. Diagrama de Estados de Protocolo	87
4.4.2.1. Sintaxe	88
4.4.2.2. Regras de Transformação	92
4.4.2.3. Considerações	95
4.4.2.4. Problema do Aeroporto: Comportamento dos Protocolos	96
4.4.3. Diagrama de Comunicação de Instâncias de Elementos de Lei	107
4.4.3.1. Sintaxe	109
4.4.3.2. Regras de Transformação	111
4.4.3.3. Considerações	113
4.4.3.4. Problema do Aeroporto: Comportamento das Instâncias de	
Elementos de Lei	114
4.5. Laudo de Consistência entre Diagramas	118
4.6. Considerações sobre LawML	120
5 A Ferramenta LawGenerator	121
5.1. O que é a ferramenta	121
5.2. Como usar a ferramenta	123
5.3. Estrutura da ferramenta	124
5.4. Como foi feita a ferramenta	126
6 Exemplo de Modelagem	128
6.1. Visão Geral do Problema	128
6.2. Especificação de Requisitos	131
6.3. Especificação LawML	133
6.3.1. Organização de Lei (Especificação Inicial)	133
6.3.2. Cena Operação de Compra com Preço Unitário Aberto	135
6.3.3. Organização de Lei (Especificação Final)	140
6.3.4. Cena Operação de Recompra com Preço Unitário Aberto	144
6.4. Transformação LawML – XMLaw	148
6.4.1. Organização de Lei, Papéis e Cenas	148
6.4.2 Cena Criador Participantes e Protocolo	149

6.4.3. Norma	150
6.4.4. Protocolo, Mensagens, Estados e Transições	153
6.5. Considerações finais	156
7 Discussões Finais e Conclusões	157
7.1. Trabalhos Futuros	160
8 Referências	162
Apêndice I Como Modelar em LawML com a Ferramenta CASE	168
Anexo A. Gramática do XMLaw – XML Schema Definition	178
Anexo B. Código no formato XMLaw do SELIC	191

Lista de figuras

Figura 2-1 - Arquitetura M-Law (Paes, 2005c).	28
Figura 2-2 - Modelo Conceitual da Abordagem de Leis (Paes, 2005b)	29
Figura 2-5 - Exemplo de XMLaw da <i>Norma</i>	31
Figura 2-6 - Exemplo de XMLaw da <i>Restrição</i>	32
Figura 2-7 - Exemplo de XMLaw do <i>Relógio</i>	33
Figura 2-8 - Exemplo de XMLaw da <i>Ação</i>	33
Figura 2-9 - Exemplo de XMLaw da <i>Cena</i>	35
Figura 2-10 - Exemplo de XMLaw de <i>Protocolo</i>	36
Figura 2-11 - Exemplo de XMLaw da <i>Mensagem</i>	37
Figura 3-1 - Cena simples de Compra/Venda de produto (Esteva, 2003)	40
Figura 3-3 - Interação LGI (Minsky, 2005).	44
Figura 3-4 - O framework OMNI (Dignum, V. et al, 2004)	48
Figura 4-1 – Compra de um Produto em um Aeroporto	65
Figura 4-2 - Estrutura principal do metamodelo do Diagrama de Instâncias	
de Elementos de Lei	68
Figura 4-3 - Novos tipos de dados de LawML	69
Figura 4-4 - Complemento do metamodelo do Diagrama de Instâncias	
de Elementos de Lei	70
Figura 4-5 - Notação das Instâncias.	71
Figura 4-6 – Notação da atribuição de valor aos atributos.	71
Figura 4-7 - Notação de uma instância de Mensagem	72
Figura 4-8 - Exemplo de notação de vínculos.	72
Figura 4-9 - Exemplo de transformação de notação para código no	
formato XMLaw	78
Figura 4-10 - Diagrama de Instâncias de Elementos de Lei do Aeroporto	
– versão inicial.	80
Figura 4-11 - Diagrama de Instâncias de Flementos de Lei da Cena	

Chegada – versão inicial.	83
Figura 4-12 - Diagrama de Instâncias de Elementos de Lei do	
Protocolo protocolo-de-chegada	85
Figura 4-13 - Notação de Estado.	89
Figura 4-14 - Notação de Transição	90
Figura 4-15 - Notação de evento de ativação de uma Transição	90
Figura 4-16 - Notação de ativação/desativação de elemento como	
resultado da ativação da Transição.	90
Figura 4-17 - Notação de condição de proteção.	91
Figura 4-18 – Exemplo de Diagrama de Estados de Protocolo	92
Figura 4-19 - Exemplo de código gerado pela transformação de	
Diagrama de Estados de Protocolo	94
Figura 4-20 - Diagrama de Estados de Protocolo de <i>protocolo-de-Chegada</i>	97
Figura 4-21 - Diagrama de Instâncias de Elementos de Lei da Cena Chegada	98
Figura 4-22 - Diagrama de Estados de Protocolo de <i>protocolo-de-seleção</i>	100
Figura 4-23 - Diagrama de Estados de Protocolo de <i>protocolo-de-negociação</i>	102
Figura 4-24 - Diagrama de Instâncias de Elementos de Lei da Cena	
Negociação – versão compacta	104
Figura 4-25 - Diagrama de Estados de Protocolo de <i>protocolo-de-pagamento</i>	105
Figura 4-26 - Diagrama de Instâncias de Elementos de Lei	106
Figura 4-27- Exemplo de Comunicação entre Instâncias	107
Figura 4-28 – Exemplo de DCIEL	109
Figura 4-29 - Notação do Diagrama de Comunicação de Instâncias de	
Elementos de Lei	110
Figura 4-30 - Exemplo de código gerado pela transformação de DCIEL	112
Figura 4-31 - Diagrama de Comunicação de Instâncias de Elementos de	
Lei do Aeroporto	114
Figura 4-32 - Diagrama de Instâncias de Elementos de Lei do Aeroporto	115
Figura 4-33 - Diagrama de Comunicação de Instâncias de Elementos de	
Lei da Cena Chegada	116
Figura 4-34 - Diagrama de Comunicação de Instâncias de Elementos de	
Lei da Cena negociação	117
Figura 5-1 – Componentes da especificação de lei de interação	122

Figura 5-2 – Tela da aplicação <i>LawGenerator</i>	123
Figura 5-3 – Estrutura da <i>LawGenerator</i>	124
Figura 6-1 – Exemplo de operação do SELIC de compra/venda	
compromissada	131
Figura 6-2 – Exemplo de operação do SELIC de	
recompra/revenda compromissada	132
Figura 6-3 – DIEL: Especificação Inicial da Organização de Lei	134
Figura 6-4 – DIEL: Estrutura do Protocolo da Cena de Compra/Venda	136
Figura 6-5 – DEP: Comportamento do Protocolo da Cena de Compra/Venda	137
Figura 6-6 – DIEL: Estrutura da Cena de Compra/Venda	139
Figura 6-7 – DIEL: Especificação Final da Organização de Lei –	
Compromisso de Recompra	140
Figura 6-8 – DCIEL: Compromisso de Recompra	141
Figura 6-9 – DIEL: Especificação Final da Organização de Lei –	
Compromisso de Revenda	142
Figura 6-10 – DCIEL: Compromisso de Revenda	143
Figura 6-11 – DIEL: Estrutura do Protocolo da Cena de Recompra/Revenda	144
Figura 6-12 – DEP: Comportamento do Protocolo da Cena de	
Recompra/Revenda	145
Figura 6-13 – DIEL: Estrutura da Cena de Recompra/Revenda	147
Figura 6-14 – Código no Formato XMLaw de Organização de Lei, Papéis	
e Cenas	148
Figura 6-15 – Código no Formato XMLaw de uma Cena, seu Criador,	
seus Participantes e seu Protocolo	149
Figura 6-16 – Código no Formato XMLaw da Norma de Obrigação de	
Revenda	150
Figura 6-17 – DIEL: Especificação Estrutural da Norma de Obrigação de	
Revenda	151
Figura 6-18 – DEP: Ativação de Norma como Efeito da Ativação de	
uma Transição	151
Figura 6-19 – DEP: Desativação de Norma como Efeito da Ativação de	
uma Transição	152
Figura 6-20 – DCIEL: Desativação de Norma como Efeito de Evento	

Enviado por uma Instância	152
Figura 6-21 – Código no Formato XMLaw de Protocolo	153
Figura 6-22 – DIEL: Especificação Estrutural Resumida da Cena de Compra	154
Figura 6-23 – DEP: Especificação Resumida do Comportamento do	
Protocolo de Negociação	155
Figura 6-24 – Código no Formato XMLaw de uma Mensagem	155
Figura I-1 – Projeto do Visual Paradigm que contém apenas o modelo	
conceitual.	169
Figura I-2 – Exemplo de atribuição de classificador a uma instância	170
Figura I-3 – Exemplo de atribuição de valor a atributo de uma instância	171
Figura I-4 – Exemplo de atribuição de valor com formato especial a atributo	171
Figura I-5 – Exemplo de vínculos entre instâncias	172
Figura I-6 – Exemplo instância de classe de associação	173
Figura I-7 – Exemplo de DCIEL no Visual Paradigm	174
Figura I-8 – Exemplo de representação de um DEP associado a um protocolo	175
Figura I-9 – Exemplo de atributos de Estado	175
Figura I-10 – Exemplo de efeito da ativação de uma transição	176
Figura I-11 – Exemplo de representação de condições de guarda de uma	
transição	177
Figura I-12 – Exemplo de evento de ativação de uma transição	177

Lista de tabelas

Tabela 4-1 - Tipos de eventos gerados pelos elementos de lei.	87
Tabela 7-1 - Comparação entre as abordagens de governança em Sistemas	
Multi-Agentes.	159

Lista de Siglas e Abreviaturas

AWT Abstract Window Toolkit

BDI Beliefs, Desires and Intentions

CASE Computer-Aided Software Engineering

cfp call-for-proposal

DCIEL Diagrama de Comunicação de Instâncias de Elementos de Lei

DEP Diagrama de Estados de Protocolo

DIEL Diagrama de Instâncias de Elementos de Lei

FIPA Foundation for Intelligent Physical Agents

GUI Graphical User Interface

IDE Integrated Development Environment

IF Instituição Financeira

LGI Law-Governed Interaction

MDA Model Driven Architecture

NoA Normative Agent Architecture

OMNI Organization Model for Normative Institutions

PU Preço Unitário

SELIC Sistema Especial de Liquidação e Custódia

SMA Sistema Multi-Agentes

SWT Standard Widget Toolkit

UML Unified Modeling Language

XML eXtensible Markup Language

XSD XML Schema Definiiton

O que se deve entender por lei natural?

- A lei de Deus. É a única verdadeira para a felicidade do homem; ela indica o que deve ou não fazer, e ele é infeliz somente quando se afasta dela.

Deus deu a todos os homens meios de conhecer Sua lei?

- Todos podem conhecê-la, mas nem todos a compreendem; os que a compreendem melhor são os homens de bem e os que procuram pesquisá-la; entretanto, todos a compreenderão um dia, porque é preciso que o progresso se realize.

Onde está escrita a lei de Deus?

- Na consciência.

Allan Kardec, O Livro dos Espíritos